In aeronautical and naval engineering, pusher configuration is the term used to describe a drivetrain of Aircraft or watercraft with propulsion device(s) after the engine(s). This is in contrast to the more conventional tractor configuration, which places them in front.
Though the term is most commonly applied to aircraft, its most ubiquitous propeller example is a common outboard motor for a small boat.
“Pusher configuration” describes the specific (propeller or ducted fan) thrust device attached to a craft, either aerostat (airship) or aerodynes (aircraft, WIG, paramotor, rotorcraft) or others types such as hovercraft, airboat, and propeller-driven .
Many early aircraft (especially biplanes) were "pushers", including the Wright Flyer (1903), the Santos-Dumont 14-bis (1906), the Voisin-Farman I (1907), and the Curtiss Model D used by Eugene Ely for the first ship landing on January 18, 1911. Henri Farman's pusher Farman III and its successors were so influential in Britain that pushers in general became known as the "Farman type".The Royal Aircraft Factory referred to all the early pushers they built as Farman Experimentals - or F.E.s. Other early pusher configurations were variations on this theme.
The classic "Farman" pusher had the propeller "mounted (just) behind the main lifting surface" with the engine fixed to the lower wing or between the wings, immediately forward of the propeller in a stub fuselage (that also contained the pilot) called a nacelle. The main difficulty with this type of pusher design was attaching the tail (empennage). This needed to be in the same general location as on a tractor aircraft, but its support structure had to avoid the propeller.
The earliest examples of pushers relied on a canard but this has serious aerodynamic implications that the early designers were unable to resolve. Typically, mounting the tail was done with a complex wire-braced framework that created a lot of drag. Well before the beginning of the First World War, this drag was recognized as just one of the factors that would ensure that a Farman-style pusher would have an inferior performance to an otherwise similar tractor type.
The U.S. Army banned pusher aircraft in late 1914 after several pilots died in crashes of aircraft of this type, so from about 1912 onwards, the great majority of new U.S. landplane designs were tractor biplanes, with pushers of all types becoming regarded as old-fashioned on both sides of the Atlantic. However, new pusher designs continued to be designed right up to the armistice, such as the Vickers Vampire, although few entered service after 1916.
At least up to the end of 1916, however, pushers (such as the Airco DH.2 fighter) were still favored as gun-carrying aircraft by the British Royal Flying Corps, because a forward-firing gun could be used without being obstructed by the arc of the propeller. With the successful introduction of Fokker's mechanism for synchronizing the firing of a machine gun with the blades of a moving propeller, followed quickly by the widespread adoption of synchronization gears by all the combatants in 1916 and 1917, the tractor configuration became almost universally favored, and pushers were reduced to the tiny minority of new aircraft designs that had a specific reason for using the arrangement.
Both the British and French continued to use pusher-configured bombers, though there was no clear preference either way until 1917. Such aircraft included (apart from the products of the Farman company) the Voisin bombers (3,200 built), the Vickers F.B.5 "Gunbus", and the Royal Aircraft Factory F.E.2; however, even these found themselves being shunted into training roles before disappearing entirely. Possibly the last fighter to use the Farman pusher configuration was the 1931 Vickers Type 161 COW gun fighter.
During the long eclipse of the configuration the use of pusher propellers continued in aircraft which derived a small benefit from the installation and could have been built as tractors. Biplane had for some time often been fitted with engines located above the fuselage to offer maximum clearance from the water, often driving pusher propellers to avoid spray and the hazards involved by keeping them well clear of the cockpit. The Supermarine Walrus was a late example of this layout.
The so-called push/pull layout, combining the tractor and pusher configurations—that is, with one or more propellers facing forward and one or more others facing back—was another idea that continues to be used from time to time as a means of reducing the asymmetric effects of an outboard engine failure, such as on the Farman F.222, but at the cost of a severely reduced efficiency on the rear propellers, which were often smaller and attached to lower-powered engines as a result.
By the late 1930s, the widespread adoption of all-metal stressed skin construction of aircraft meant, at least in theory, that the aerodynamic penalties that had limited the performance of pushers (and indeed any unconventional layout) were reduced; however, any improvement that boosts pusher performance also boosts the performance of conventional aircraft, and they remained a rarity in operational service—so the gap was narrowed but was closed entirely.
During World War II, experiments were conducted with pusher fighters by most of the major powers. Difficulties remained, particularly that a pilot having to bail out of a pusher was liable to pass through the propeller arc. This meant that of all the types concerned, only the relatively conventional Swedish SAAB 21 of 1943 went into series production. Other problems related to the aerodynamics of canard layouts, which had been used on most of the pushers, proved more difficult to resolve.See stability issues of the Curtiss-Wright XP-55 Ascender One of the world's first was (per force) designed for this aircraft, which later re-emerged with a jet engine.
The largest pusher aircraft to fly was the Convair B-36 "Peacemaker" of 1946, which was also the largest bomber ever operated by the United States. It had six 28-cylinder Pratt & Whitney Wasp Major mounted in the wing, each driving a pusher propeller located behind the trailing edge of the wing, plus four jet engines. Although the vast majority of propeller-driven aircraft continue to use a tractor configuration, there has been in recent years something of a revival of interest in pusher designs: in light homebuilt aircraft such as Burt Rutan's canard designs since 1975, ultralights such as the Quad City Challenger (1983), flexwings, paramotors, powered parachutes, and . The configuration is also often used for unmanned aerial vehicles, due to requirements for a forward fuselage free of any engine interference.
The Aero Dynamics Sparrow Hawk was another homebuilt aircraft constructed chiefly in the 1990s.
Pusher aircraft have been built in many different configurations. In the vast majority of fixed-wing aircraft, the propeller or propellers are still located just behind the trailing edge of the "main lifting surface", or below the wing (paramotors) with the engine being located behind the crew position.
Conventional aircraft layout have a tail (empennage) for stabilization and control. The propeller may be close to the engine, as the usual direct drive:
The engine may be buried in a forward remote location, driving the propeller by drive shaft or belt:
In canard designs a smaller wing is sited forward of the aircraft's main wing. This class mainly uses a direct drive,An exception is the Raptor Aircraft Raptor whose Audi V6 diesel engine drives the propeller via PRSU belts. either single-engine axial propeller,Canard aircraft: wartime Curtiss-Wright XP-55 Ascender and Japanese Kyushu J7W (with a drive shaft), Ambrosini SS.4; Rutan Rutan VariEze and Rutan Long-EZ, AASI Jetcruzer or twin engines with a symmetrical layout,Canard symmetrical layout: Wright Flyer, Beechcraft Starship or an in line layout (push-pull) as the Rutan Voyager.
In tailless aircraft such as Lippisch Delta 1 and Westland-Hill Pterodactyl types I and IV, horizontal stabilizers at the rear of the aircraft are absent. like the Northrop YB-35 are tailless aircraft without a distinct fuselage. In these installations, the engines are either mounted in nacelles or the fuselage on tailless aircraft, or buried in the wing on flying wings, driving propellers behind the trailing edge of the wing, often by extension shaft.
Almost without exception, Ultralight trike, , and powered parachutes use a pusher configuration.
Other craft with pusher configurations run on flat surfaces, land, water, snow, or ice. Thrust is provided by propellers and ducted fans, located to the rear of the vehicle. These include:
Aircraft where the engine is carried by, or very close to, the pilot (such as paramotors, powered parachutes, autogyros, and flexwing trikes) place the engine behind the pilot to minimize the danger to the pilot's arms and legs. These two factors mean that this configuration was widely used for early combat aircraft, and remains popular today among ultralight aircraft, unmanned aerial vehicles (UAVs), and radio-controlled airplanes.
In contrast to tractor layout, a pusher propeller at the end of the fuselage is stabilizing. A pusher needs less stabilizing vertical tail area and hence presents less weathercock effect; at takeoff roll, it is generally less sensitive to crosswind.Because of less weathercock stability
When there is no tail within the slipstream, unlike a tractor, there is no rotating propwash around the fuselage inducing a side force to the fin. At takeoff, a canard pusher pilot does not have to apply rudder input to balance this moment.
Efficiency can be gained by mounting a propeller behind the fuselage, because it re-energizes the boundary layer developed on the body, and reduces the form drag by keeping the flow attached to the fuselage. However, it is usually a minor gain compared to the airframe's detrimental effect on propeller efficiency.
Wing profile drag may be reduced due to the absence of prop-wash over any section of the wing.
A pusher ducted fan system offers a supplementary safety feature attributed to enclosing the rotating fan in the duct, therefore making it an attractive option for various advanced UAV configurations or for small/personal air vehicles or for aircraft models.
Due to a generally high thrust line needed for propeller ground clearance, negative (down) pitching moments, and in some cases the absence of prop-wash over the tail, a higher speed and a longer roll may be required for takeoff compared to tractor aircraft.http://www.kitplanes.com/magazine/pdfs/Grinvalds_Orion_0409.pdfOrion V1(rotation speed): 65 kn The Burt Rutan answer to this problem is to lower the nose of the aircraft at rest such that the empty center of gravity is then ahead of the main wheels. In , a high thrust line results in a control hazard known as power push-over.
When an airplane flies in icing conditions, ice can accumulate on the wings. If an airplane with wing-mounted pusher engines experiences icing, the props will ingest shredded chunks of ice, endangering the propeller blades and parts of the airframe that can be struck by ice violently redirected by the props. In early pusher combat aircraft, spent ammunition casings caused similar problems, and devices for collecting them had to be devised.
Prop efficiency is usually at least 2–5% less and in some cases more than 15% less than an equivalent tractor installation. Full-scale wind tunnel investigation of the canard Rutan VariEze showed a propeller efficiency of 0.75 compared to 0.85 for a tractor configuration, a loss of 12%. Pusher props are noisy, and cabin noise may be higher than tractor equivalent (Cessna XMC vs Cessna 152). Propeller noise may increase because the engine exhaust flows through the props. This effect may be particularly pronounced when using turboprop engines due to the large volume of exhaust they produce.
Crew members risk striking the propeller while attempting to parachute of a single-engined airplane with a pusher prop. At least one early ejector seat was designed specifically to counter this risk. Some modern light aircraft include a parachute system that saves the entire aircraft, thus averting the need to bail out.
|
|